Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            An experiment designed to teach principles of continuous flow technologies for photocatalysis is 10 described as a part of a two-week summer camp program for high school students. Students learned about green chemistry, photocatalysis, flow chemistry, and the role of 3–D printing for the design and production of custom millifluidic reactors. Students examined reactor designs which differed in terms of residence times and mixing capabilities. Such evaluation was based on the combination of blue and yellow dyes, followed by running a photocatalytic thiol-ene reaction on gram-scale.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.more » « less
- 
            Materials that rectify light into current in their bulk are desired for optoelectronic applications. In Weyl semimetals that break inversion symmetry, bulk photocurrents may arise due to nonlinear optical processes that are enhanced near the Weyl nodes. However, the photoresponse of these materials is commonly studied by scanning photocurrent microscopy, which convolves the effects of photocurrent generation and collection. Here we directly image the photocurrent flow inside the type-II Weyl semimetals WTe2 and TaIrTe4 using high-sensitivity quantum magnetometry with nitrogen-vacancy centre spins. We elucidate a mechanism for bulk photocurrent generation, which we call the anisotropic photothermoelectric effect, where unequal thermopowers along different crystal axes drive intricate circulations of photocurrent around the photoexcitation. Using overlapping scanning photocurrent microscopy and magnetic imaging at the interior and edges of the sample, we visualize how the anisotropic photothermoelectric effect stimulates the long-range photocurrent collected in our WTe2 and TaIrTe4 devices through the Shockley–Ramo mechanism. Our results highlight a widely relevant source of current flow and will inspire photodetectors that utilize bulk materials with thermoelectric anisotropy.more » « less
- 
            The pandemic outbreak of COVID-19 has highlighted an urgent need for infectious disease education for K-12 students. To gather a better understanding of what educational interventions have been conducted and to what effect, we performed a scoping review. We identified and examined 23 empirical researcher- and teacher-designed studies conducted in the last 20 years that have reported on efforts to help K-12 students learn about infectious diseases, with a focus on respiratory transmission. Our review shows studies of educational interventions on this topic are rare, especially with regard to the more population-scale (vs. cellular level) concepts of epidemiology. Furthermore, efforts to educate youth about infectious disease primarily focused on secondary school students, with an emphasis on interactive learning environments to model or simulate both cellular-level and population-level attributes of infectious disease. Studies were only mildly successful in raising science interest, with somewhat stronger findings on helping students engage in scientific inquiry on the biology of infectious diseases and/or community spread. Most importantly, efforts left out critical dimensions of transmission dynamics key to understanding implications for public health. Based on our review, we articulate implications for further research and development in this important domain.more » « less
- 
            Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g. , by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
